Unsupervised Sentence Simplification Using Deep Semantics

نویسندگان

  • Shashi Narayan
  • Claire Gardent
چکیده

We present a novel approach to sentence simplification which departs from previous work in two main ways. First, it requires neither hand written rules nor a training corpus of aligned standard and simplified sentences. Second, sentence splitting operates on deep semantic structure. We show (i) that the unsupervised framework we propose is competitive with four state-of-the-art supervised systems and (ii) that our semantic based approach allows for a principled and effective handling of sentence splitting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Simplification using Deep Semantics and Machine Translation

We present a hybrid approach to sentence simplification which combines deep semantics and monolingual machine translation to derive simple sentences from complex ones. The approach differs from previous work in two main ways. First, it is semantic based in that it takes as input a deep semantic representation rather than e.g., a sentence or a parse tree. Second, it combines a simplification mod...

متن کامل

Building a Monolingual Parallel Corpus for Text Simplification Using Sentence Similarity Based on Alignment between Word Embeddings

Methods for text simplification using the framework of statistical machine translation have been extensively studied in recent years. However, building the monolingual parallel corpus necessary for training the model requires costly human annotation. Monolingual parallel corpora for text simplification have therefore been built only for a limited number of languages, such as English and Portugu...

متن کامل

Simple, readable sub-sentences

We present experiments using a new unsupervised approach to automatic text simplification, which builds on sampling and ranking via a loss function informed by readability research. The main idea is that a loss function can distinguish good simplification candidates among randomly sampled sub-sentences of the input sentence. Our approach is rated as equally grammatical and beginner reader appro...

متن کامل

Sentence Simplification with Deep Reinforcement Learning

Sentence simplification aims to make sentences easier to read and understand. Most recent approaches draw on insights from machine translation to learn simplification rewrites from monolingual corpora of complex and simple sentences. We address the simplification problem with an encoder-decoder model coupled with a deep reinforcement learning framework. Our model, which we call DRESS (as shorth...

متن کامل

An Unsupervised Alignment Algorithm for Text Simplification Corpus Construction

We present a method for the sentence-level alignment of short simplified text to the original text from which they were adapted. Our goal is to align a medium-sized corpus of parallel text, consisting of short news texts in Spanish with their simplified counterpart. No training data is available for this task, so we have to rely on unsupervised learning. In contrast to bilingual sentence alignm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016